On the nonnegative inverse eigenvalue problem of traditional matrices

Authors

  • A. M. Nazari Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
  • S. Kamali Maher Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
Abstract:

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

on the nonnegative inverse eigenvalue problem of traditional matrices

in this paper, at rst for a given set of real or complex numbers  with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which  is its spectrum. in continue we present some conditions for existence such nonnegative tridiagonal matrices.

full text

Nonnegative Inverse Eigenvalue Problem

Nonnegative matrices have long been a sorce of interesting and challenging mathematical problems. They are real matrices with all their entries being nonnegative and arise in a num‐ ber of important application areas: communications systems, biological systems, economics, ecology, computer sciences, machine learning, and many other engineering systems. Inverse eigenvalue problems constitute an ...

full text

The inverse eigenvalue problem via orthogonal matrices

In this paper we study the inverse eigenvalue problem for symmetric special matrices and introduce sufficient conditions for obtaining nonnegative matrices. We get the HROU algorithm from [1] and introduce some extension of this algorithm. If we have some eigenvectors and associated eigenvalues of a matrix, then by this extension we can find the symmetric matrix that its eigenvalue and eigenvec...

full text

Numerical Methods for Solving Inverse Eigenvalue Problems for Nonnegative Matrices

Presented are two related numerical methods, one for the inverse eigenvalue problem for nonnegative or stochastic matrices and another for the inverse eigenvalue problem for symmetric nonnegative matrices. The methods are iterative in nature and utilize alternating projection ideas. For the symmetric problem, the main computational component of each iteration is an eigenvalue-eigenvector decomp...

full text

On the Inverse Eigenvalue Problem for Real Circulant Matrices

The necessary condition for eigenvalue values of a circulant matrix is studied It is then proved that the necessary condition also su ces the existence of a circulant matrix with the prescribed eigenvalue values Introduction An n n matrix C of the form C c c cn cn c c cn cn cn c cn c c cn c is called a circulant matrix As each row of a circulant matrix is just the previous row cycled forward on...

full text

The real nonnegative inverse eigenvalue problem is NP-hard

A list of complex numbers is realizable if it is the spectrum of a nonnegative matrix. In 1949 Sulěımanova posed the nonnegative inverse eigenvalue problem (NIEP): the problem of determining which lists of complex numbers are realizable. The version for reals of the NIEP (RNIEP) asks for realizable lists of real numbers. In the literature there are many sufficient conditions or criteria for lis...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 02  issue 03

pages  167- 174

publication date 2013-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023